Safety for bisimulation in monadic second-order logic

نویسنده

  • Marco Hollenberg
چکیده

We characterize those formulas of MSO monadic second order logic that are safe for bisim ulation formulas de ning binary relations such that any bisimulation is also a bisimulation with respect to these de ned relations Every such formula is equivalent to one constructed from calculus tests atomic actions and the regular operations The proof uses a characterization of completely additive calculus formulas formulas p that distribute over arbitrary unions It turns out that complete additivity is equivalent to distributivity over countable unions For FOL rst order logic a similar theorem is shown giving an alternative proof to the original of Here though distributivity over nite unions is su cient This enables us to show that the characterization of safe FOL formulas carries over to the setting of nite models

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating Levels of the Mu-Calculus Hierarchy and Levels of the Monadic Hierarchy

As already known [14], the mu-calculus [17] is as expressive as the bisimulation invariant fragment of monadic second order Logic (MSO). In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation invariant fragment of levels of the monadic quantifiers alternation-dep...

متن کامل

On the Expressive Power of CTL

We show that the expressive power of the branching time logic CTL coincides with that of the class of bisimulation invariant properties expressible in so-called monadic path logic: monadic second order logic in which set quantification is restricted to paths. In order to prove this result, we first prove a new Composition Theorem for trees. This approach is adapted from the approach of Hafer an...

متن کامل

Bisimulation Safe Fixed Point Logic

We define and investigate a new modal fixed-point logic, called bisimulation safe fixed-point logic BSFP, which is a calculus of binary relations that extends both PDL and the modal μ-calculus. The logic is motivated by concepts and results due to van Benthem and Hollenberg on bisimulation safety which plays a similar role for binary relations as the more familiar notion of bisimulation invaria...

متن کامل

An expressive completeness theorem for coalgebraic modal mu-calculi

Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given...

متن کامل

An Expressive Completeness Theorem for Coalgebraic Modal Μ-calculi

Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996